Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
Microb Pathog ; : 106646, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631414

RESUMEN

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2% (11/5483), 8.82% (485/5483), 1.22% (67/5483), and 4.94% (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39%, 0.11%, 0.01%, and 0.03%, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.

2.
J Integr Plant Biol ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629459

RESUMEN

Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.

4.
Open Forum Infect Dis ; 11(4): ofae137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577029

RESUMEN

The immune mechanisms of long coronavirus disease 2019 (COVID) are not yet fully understood. We aimed to investigate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory immune responses in discharged COVID-19 patients with and without long COVID symptoms. In this cross-sectional study, we included 1041 hospitalized COVID-19 patients with the original virus strain in Wuhan (China) 12 months after initial infection. We simultaneously conducted a questionnaire survey and collected peripheral blood samples from the participants. Based on the presence or absence of long COVID symptoms during the follow-up period, we divided the patients into 2 groups: a long COVID group comprising 480 individuals and a convalescent group comprising 561 individuals. Both groups underwent virus-specific immunological analyses, including enzyme-linked immunosorbent assay, interferon-γ-enzyme-linked immune absorbent spot, and intracellular cytokine staining. At 12 months after infection, 98.5% (1026/1041) of the patients were found to be seropositive and 93.3% (70/75) had detectable SARS-CoV-2-specific memory T cells. The long COVID group had significantly higher levels of receptor binding domain (RBD)-immunoglobulin G (IgG) levels, presented as OD450 values, than the convalescent controls (0.40 ± 0.22 vs 0.37 ± 0.20; P = .022). The magnitude of SARS-CoV-2-specific T-cell responses did not differ significantly between groups, nor did the secretion function of the memory T cells. We did not observe a significant correlation between SARS-CoV-2-IgG and magnitude of memory T cells. This study revealed that long COVID patients had significantly higher levels of RBD-IgG antibodies when compared with convalescent controls. Nevertheless, we did not observe coordinated SARS-CoV-2-specific cellular immunity. As there may be multiple potential causes of long COVID, it is imperative to avoid adopting a "one-size-fits-all" approach to future treatment modalities.

5.
Biomed Opt Express ; 15(4): 2048-2062, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633095

RESUMEN

The dynamic range and fluctuations of fluorescence intensities and lifetimes in biological samples are large, demanding fast, precise, and versatile techniques. Among the high-speed fluorescence lifetime imaging microscopy (FLIM) techniques, directly sampling the output of analog single-photon detectors at GHz rates combined with computational photon counting can handle a larger range of photon rates. Traditionally, the laser clock is not sampled explicitly in fast FLIM; rather the detection is synchronized to the laser clock so that the excitation pulse train can be inferred from the cumulative photon statistics of several pixels. This has two disadvantages for sparse or weakly fluorescent samples: inconsistencies in inferring the laser clock within a frame and inaccuracies in aligning the decay curves from different frames for averaging. The data throughput is also very inefficient in systems with repetition rates much larger than the fluorescence lifetime due to significant silent regions where no photons are expected. We present a method for registering the photon arrival times to the excitation using time-domain multiplexing for fast FLIM. The laser clock is multiplexed with photocurrents into the silent region. Our technique does not add to the existing data bottleneck, has the sub-nanosecond dead time of computational photon counting based fast FLIM, works with various detectors, lasers, and electronics, and eliminates the errors in lifetime estimation in photon-starved conditions. We demonstrate this concept on two multiphoton setups of different laser repetition rates for single and multichannel FLIM multiplexed into a single digitizer channel for real-time imaging of biological samples.

6.
Psychol Res Behav Manag ; 17: 917-931, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464811

RESUMEN

Purpose: In the intersection of the aging and information era, the development of digital aging significantly influences the well-being of older individuals. Given the divergent findings in various studies exploring the effects of social media use on mental health, this study specifically examined the impact of forwarding, a prevalent social media behavior among older individuals, focusing on the effects of use intensity on their subjective well-being (SWB) and the specific mechanisms involved. Materials and Methods: A total of 323 Chinese older adults completed the questionnaire. SPSS along with Hayes Process Models 4 and 7 was employed to test the hypotheses. Results: The results indicated that social media forwarding intensity significantly and positively predicted SWB of older adults. This association was partially mediated by perceived social support (PSS) and self-esteem. Gender served as a moderator, highlighting that the positive predictive effects of forwarding intensity on PSS and self-esteem were more pronounced for older men than for older women. Further, the findings confirmed the existence of the moderated mediating effect such that the impact of forwarding on SWB was mediated through both PSS and self-esteem for older men, while, for older women, it was solely mediated by PSS. Conclusion: This study revealed the positive impact of forwarding, a user-friendly social media function, on the well-being of older adults and elucidated the specific mechanisms through a moderated mediation model. In light of these findings, we propose customizing the development of age-friendly social media functions to address the diverse psychological needs of older adults, taking into account gender differences. These findings may offer valuable insights for constructing digital age-friendly platforms and fostering active aging development.

7.
Microorganisms ; 12(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38543477

RESUMEN

Respiratory illnesses present a significant threat to porcine health, with co-infections involving Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Streptococcus suis (SS), Porcine Circovirus Type 2 (PCV2), and Porcine Circovirus Type 3 (PCV3) acting as the primary causative agents. As a result, the precise diagnosis of PRRSV, PCV2, PCV3 and SS is of paramount importance in the prevention and control of respiratory diseases in swine. Therefore, we conducted a molecular bioinformatical analysis to concurrently detect and differentiate PRRSV, PCV2, PCV3 and SS. We selected the ORF6 gene of PRRSV, the ORF2 gene of PCV2 and PCV3, and the glutamate dehydrogenase (GDH) gene of SS as targets. Specific primers and probes were designed for each pathogen, and following meticulous optimization of reaction conditions, we established a multiple TaqMan fluorescence quantitative PCR detection method. Subsequently, we subjected this method to a comprehensive assessment, evaluating its specificity, sensitivity, and repeatability. The research results demonstrated that the established multiple TaqMan fluorescence quantitative PCR detection method displays displayed exemplary specificity, with no instances of cross-reactivity with other pathogens. The method's minimum detection concentrations for PRRSV, PCV2, PCV3, and SS were 2.80 × 101 copies/µL, 1.96 × 102 copies/µL, 2.30 × 102 copies/µL, and 1.75 × 103 copies/µL, respectively. When applied to the analysis of 30 clinical samples, the results closely mirrored those obtained through Chinese standard uniplex real-time qPCR detection method for PRRSV, as well as the general PCR methods for SS, PCV2, and PCV3. This study underscores the robust specificity, high sensitivity, and consistent stability of the multiple TaqMan fluorescence quantitative PCR detection method that we have developed. It is ideally suited to the clinical monitoring of PRRSV, PCV2, PCV3, and SS, and it carries significant importance in ongoing efforts to prevent and manage respiratory diseases in porcine populations.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124099, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38513421

RESUMEN

Microplastic pollution has become a global environmental problem that cannot be ignored. Raman spectroscopy has been widely used for microplastics detection because it can be performed in real-time and is non-destructive. Conventional detection techniques have had weak signals and low signal-to-noise ratios (SNR). Here, an efficient and reliable detection method is demonstrated. Specifically, a confocal microscope combined with an echelle-grating spatial-heterodyne Raman spectrometer (CM-ESHRS) was constructed. The confocal microscopy and the characteristics of the echelle grating enabled high optical throughput, high SNR, high spectral resolution, and a wide spectral detection band. After spectral calibration, the resolution approached 0.67 cm-1, moreover, the spectral detection range for a single order was 1372.16 cm-1. We detected and analyzed nineteen kinds of microplastics, such as polyamide, polypropylene, and polymethylmethacrylate, and the main vibrational spectral bands were categorized. Compared with commercial dispersive spectrometers, CM-ESHRS has a higher optical throughput. In addition, we examined microplastics with various particle sizes, microplastics mixed in flour, and microplastic particles of different materials under mixed conditions, all of which yielded complete spectral information. Overall, CM-ESHRS exhibits good potential applications for the detection of microplastics.

9.
J Biomed Opt ; 29(3): 036501, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487259

RESUMEN

Significance: Label-free nonlinear optical microscopy has become a powerful tool for biomedical research. However, the possible photodamage risk hinders further clinical applications. Aim: To reduce these adverse effects, we constructed a new platform of simultaneous label-free autofluorescence multi-harmonic (SLAM) microscopy, featuring four-channel multimodal imaging, inline photodamage monitoring, and pulse repetition-rate tuning. Approach: Using a large-core birefringent photonic crystal fiber for spectral broadening and a prism compressor for pulse pre-chirping, this system allows users to independently adjust pulse width, repetition rate, and energy, which is useful for optimizing imaging conditions towards no/minimal photodamage. Results: It demonstrates label-free multichannel imaging at one excitation pulse per image pixel and thus paves the way for improving the imaging speed by a faster optical scanner with a low risk of nonlinear photodamage. Moreover, the system grants users the flexibility to autonomously fine-tune repetition rate, pulse width, and average power, free from interference, ensuring the discovery of optimal imaging conditions with high SNR and minimal phototoxicity across various applications. Conclusions: The combination of a stable laser source, independently tunable ultrashort pulse, photodamage monitoring features, and a compact design makes this new system a robust, powerful, and user-friendly imaging platform.


Asunto(s)
Rayos Láser , Fotones , Microscopía Óptica no Lineal , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
10.
Biochem Pharmacol ; 222: 116100, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428824

RESUMEN

V-domain containing Ig Suppressor of T cell Activation (VISTA) is predominantly expressed on myeloid cells and functions as a ligand/receptor/soluble molecule. In inflammatory responses and immune responses, VISTA regulates multiple functions of myeloid cells, such as chemotaxis, phagocytosis, T cell activation. Since inflammation and immune responses are critical in many diseases, VISTA is a promising therapeutic target. In this review, we will describe the expression and function of VISTA on different myeloid cells, including neutrophils, monocytes, macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs). In addition, we will discuss whether the functions of VISTA on these cells impact the disease processing.


Asunto(s)
Antígenos B7 , Células Supresoras de Origen Mieloide , Humanos , Antígenos B7/genética , Células Mieloides/metabolismo , Macrófagos/metabolismo , Inflamación
11.
World J Gastrointest Oncol ; 16(2): 563-570, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38425401

RESUMEN

BACKGROUND: Early adenocarcinoma mixed with a neuroendocrine carcinoma (NEC) component arising in the gastroesophageal junctional (GEJ) region is rare and even rarer in young patients. Here, we report such a case in a 29-year-old Chinese man. CASE SUMMARY: This patient presented to our hospital with a 3-mo history of dysphagia and regurgitation. Upper endoscopy revealed an elevated nodule in the distal esophagus 1.6 cm above the GEJ line, without Barrett's esophagus or involvement of the gastric cardia. The nodule was completely resected by endoscopic submucosal dissection (ESD). Pathological examination confirmed diagnosis of intramucosal adenocarcinoma mixed with an NEC component, measuring 1.5 cm. Immunohistochemically, both adenocarcinoma and NEC components were positive for P53 with a Ki67 index of 90%; NEC was positive for synaptophysin and chromogranin. Next-generation sequencing of 196 genes demonstrated a novel germline mutation of the ERCC3 gene in the DNA repair pathway and a germline mutation of the RNF43 gene, a common gastric cancer driver gene, in addition to pathogenic somatic mutations in P53 and CHEK2 genes. The patient was alive without evidence of the disease 36 mo after ESD. CONCLUSION: Early adenocarcinoma with an NEC component arising in the distal esophageal side of the GEJ region showed evidence of gastric origin.

12.
Chest ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431050

RESUMEN

BACKGROUND: Corticosteroids have beneficial effects in improving outcomes in hospitalized patients with severe COVID-19 by suppressing excessive immune responses. However, the effect of corticosteroids on the humoral and T-cell responses of survivors of COVID-19 1 year after infection remains uncertain because it relates to the extent of immediate, antigen-specific defense provided by protective memory. RESEARCH QUESTION: What is the effect of corticosteroids on long-term humoral and T-cell immune responses? STUDY DESIGN AND METHODS: In this retrospective cohort study conducted at a single center, we analyzed data from a cohort who had survived COVID-19 to compare the 1-year seropositivity and titer changes in neutralizing antibodies (NAbs) and SARS-CoV-2-specific antibodies. Additionally, we evaluated the magnitude and rate of SARS-CoV-2-specific T-cell response in individuals who received corticosteroids during hospitalization and those who did not. RESULTS: Our findings indicated that corticosteroids do not statistically influence the kinetics or seropositive rate of NAbs against the Wuhan strain of SARS-CoV-2 from 6 months to 1 year. However, subgroup analysis revealed a numerical increase of absolute NAbs titers, from 20.0 to 28.2, in categories where long-term (> 15 days) and high-dose (> 560 mg) corticosteroids are administered. Similarly, corticosteroids showed no significant effect on nucleoprotein and receptor-binding domain IgG at 1 year, except for spike protein IgG (ß, 0.08; 95% CI, 0.04-0.12), which demonstrated a delayed decline of titers. Regarding T-cell immunity, corticosteroids did not affect the rate or magnitude of T-cell responses significantly. However, functional assessment of memory T cells revealed higher interferon-γ responses in CD4 (ß, 0.61; 95% CI, 0.10-1.12) and CD8 (ß, 0.63; 95% CI, 0.11-1.15) memory T cells in the corticosteroids group at 1 year. INTERPRETATION: Based on our findings, short-term and low-dose corticosteroid therapy during hospitalization does not have a significant effect on long-term humoral kinetics or the magnitude and rate of memory T-cell responses to SARS-CoV-2 antigens. However, the potential harmful effects of long-term and high-dose corticosteroid use on memory immune responses require further investigation.

13.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38328159

RESUMEN

Optimal imaging strategies remain underdeveloped to maximize information for fluorescence microscopy while minimizing the harm to fragile living systems. Taking hint from the supercontinuum generation in ultrafast laser physics, we generated supercontinuum fluorescence from untreated unlabeled live samples before nonlinear photodamage onset. Our imaging achieved high-content cell phenotyping and tissue histology, identified bovine embryo polarization, quantified aging-related stress across cell types and species, demystified embryogenesis before and after implantation, sensed drug cytotoxicity in real-time, scanned brain area for targeted patching, optimized machine learning to track small moving organisms, induced two-photon phototropism of leaf chloroplasts under two-photon photosynthesis, unraveled microscopic origin of autumn colors, and interrogated intestinal microbiome. The results enable a facility-type microscope to freely explore vital molecular biology across life sciences.

14.
Nutrients ; 16(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398817

RESUMEN

Obesity and its complications constitute a main threat to global human health. The purpose of this investigation was to explore the influences of Clostridium tyrobutyricum (Ct) on lipid metabolism, intestinal barrier function, and intestinal microbiome in obese mice induced by a high-fat diet (HFD). After establishing the obesity model, 107 CFU/mL and 108 CFU/mL C. tyrobutyricum were used to intervene in HFD-fed mice by gavage for six weeks, and indexes related to obesity were measured. In the liver of HFD-fed mice, the results revealed that C. tyrobutyricum reduced liver weight and the levels of triglyceride (TG), total cholesterol (TC), and nonesterified fatty acid (NEFA), along with decreasing red lipid droplets and fat vacuoles. After C. tyrobutyricum intervention, the mRNA expression of peroxisome proliferator-activated receptor-γ (PPARγ) was downregulated, and AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-α (PPARα), adipose triglyceride lipase (ATGL), and hormone-sensitive lipase (HSL) were upregulated in the liver. Additionally, C. tyrobutyricum alleviated intestinal morphology injury caused by HFD, decreased the expression of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-1ß in the colon, and upregulated tight junction protein expression. In addition, 16S rRNA sequencing revealed that C. tyrobutyricum increases the diversity of intestinal microbiota. Overall, C. tyrobutyricum improved HFD-induced lipid metabolism disorders, preserved the intestinal barrier's integrity, and modulated the structure of the intestinal microbiome. These findings provide a novel insight into the role of C. tyrobutyricum as a probiotic in regulating lipid metabolism.


Asunto(s)
Clostridium tyrobutyricum , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Microbioma Gastrointestinal/fisiología , Ratones Obesos , 60435 , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Ratones Endogámicos C57BL
15.
Huan Jing Ke Xue ; 45(1): 228-238, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216474

RESUMEN

An in-depth study of the spatiotemporal variation characteristics and driving factors of ecosystem service values in the Liaohe River Delta is of great significance to its ecological environment governance and protection. Based on the land use data of the Liaohe River Delta for seven periods from 1990 to 2020, the ecosystem service value (ESV) was evaluated according to the equivalent factor coefficient correction method, establishing models for estimating the value of ecosystem services; the spatial and temporal evolution characteristics of the ESV in the study area were comprehensively analyzed; and the driving influencing factors and mechanisms of the ESV were explored. The results showed that:① From 1990 to 2020, the most common land use type in the Liaohe River Delta was cultivated land, and the areas of forest land, wetland, and unutilized land showed a decreasing trend; grassland, water, and construction land showed an increasing trend; and the area of cultivated land was basically unchanged during the 30 year period. ② In terms of the temporal evolution, the ESV in the study area showed a trend of first decreasing, then increasing, and then decreasing. In terms of the spatial distribution of ESV, the total value of ecosystem services as a whole showed a spatial divergence pattern of a high value in the southwest and low value in the northeast. ③ The sensitivity index of all land use types in the Liaohe River Delta was less than 1, indicating that the ESV was inelastic. ④ The value of ecosystem services in the Liaohe River Delta showed positive spatial coherence. On the whole, the Liaohe River Delta was dominated by HH and LL clusters, with HL clusters mostly distributed at the boundaries of LL clusters and LH clusters distributed at the boundaries of HH clusters. ⑤ Among the factors influencing the evolution of ESV in the Liaohe River Delta, DEM had the least influence, and HAI had the greatest influence on the ESV, followed by precipitation. The interaction results of all influencing factors had an enhancing effect on the spatial distribution of the ESV, among which HAI and precipitation had the strongest interaction effect, reaching 95.58%.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38272716

RESUMEN

Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.

17.
J Exp Bot ; 75(8): 2351-2371, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205848

RESUMEN

Plant senescence, as a highly integrated developmental stage, involves functional degeneration and nutrient redistribution. NAM/ATAF1/CUC (NAC) transcription factors orchestrate various senescence-related signals and mediate the fine-tuning underlying plant senescence. Previous data revealed that knockout of either NtNAC028 or NtNAC080 leads to delayed leaf senescence in tobacco (Nicotiana tabacum), which implies that NtNAC028 and NtNAC080 play respective roles in the regulation of leaf senescence, although they share 91.87% identity with each other. However, the mechanism underlying NtNAC028- and NtNAC080-regulated leaf senescence remains obscure. Here, we determined that NtNAC028 and NtNAC080 activate a putative jasmonic acid (JA) biosynthetic gene, NtLOX3, and enhance the JA level in vivo. We found that NtNAC028 and NtNAC080 interact with each other and themselves through their NA-terminal region. Remarkably, only the dimerization between NtNAC028 and NtNAC080 stimulated the transcriptional activation activity, but not the DNA binding activity of this heterodimer on NtLOX3. Metabolome analysis indicated that overexpression of either NtNAC028 or NtNAC080 augments both biosynthesis and degradation of nicotine in the senescent stages. Thus, we conclude that NtNAC028 cooperates with NtNAC080 and forms a heterodimer to enhance NtLOX3 expression and JA biosynthesis to trigger the onset of leaf senescence and impact secondary metabolism in tobacco.


Asunto(s)
Ciclopentanos , Tabaco , Oxilipinas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tabaco/genética , Senescencia de la Planta , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
18.
BMC Geriatr ; 24(1): 21, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178002

RESUMEN

BACKGROUND: Malnutrition is a common geriatric syndrome and can be targeted preoperatively to decrease the risk of postoperative delirium (POD) in older adult patients. To analyze the value of the prognostic nutritional index (PNI) to predict the incidence of POD in older adult patients with hip fractures. METHODS: This was a prospective, observational, cohort study of older adult patients with hip fractures. Preoperative PNI was calculated as 10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (/µL) using preoperative laboratory results. Patients were divided into POD and non-POD groups using the Confusion Assessment Method (CAM). The risk factors associated with POD as well as the relationship between PNI values and the incidence of POD were analyzed using univariate and multivariate logistic regression analyses. The predictive value of PNI for POD was assessed using receiver operating characteristic curve analysis. RESULTS: In this cohort of 369 patients who underwent hip fracture surgery, 67 patients (18.2%) were diagnosed with POD by the CAM results. Low PNI increased the risk of POD (odds ratio (OR) = 0.928, 95% confidence interval (CI): 0.864-0.997). General anesthesia (OR = 2.307, 95% CI: 1.279-4.162) and Mini-Mental State Examination (MMSE) score (OR = 0.956, 95% CI: 0.920-0.994) were also identified as risk factors for POD. Receiver operating characteristic curve analysis suggested that PNI combined with the anesthetic method and MMSE score may be used as a potential predictive indicator of POD after hip fracture surgery. CONCLUSION: Preoperative PNI value is related to POD in older adult patients with hip fractures. TRIAL REGISTRATION: This secondary analysis study was approved by the Peking University Third Hospital Medical Science Research Ethics Committee (approval No. M2022578) and registered in the Chinese Clinical Trial Registry (ChiCTR2300070569).


Asunto(s)
Delirio , Delirio del Despertar , Fracturas de Cadera , Humanos , Anciano , Evaluación Nutricional , Delirio/diagnóstico , Delirio/epidemiología , Delirio/etiología , Pronóstico , Estudios Prospectivos , Estudios de Cohortes , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Fracturas de Cadera/complicaciones , Fracturas de Cadera/epidemiología , Fracturas de Cadera/cirugía , Factores de Riesgo
19.
BMC Anesthesiol ; 24(1): 17, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191333

RESUMEN

BACKGROUND: Regional anesthesia with ultrasound-guided brachial plexus block is widely used for patients undergoing shoulder and upper limb surgery, but needle misplacement can result in complications. The purpose of this study was to develop and validate a convolutional neural network (CNN) model for segmentation of the brachial plexus at the interscalene level. METHODS: This prospective study included patients who underwent ultrasound-guided brachial plexus block in the Anesthesiology Department of Beijing Jishuitan Hospital between October 2019 and June 2022. A Unet semantic segmentation model was developed to train the CNN to identify the brachial plexus features in the ultrasound images. The degree of overlap between the predicted segmentation and ground truth segmentation (manually drawn by experienced clinicians) was evaluated by calculation of the Dice index and Jaccard index. RESULTS: The final analysis included 502 images from 127 patients aged 41 ± 14 years-old (72 men, 56.7%). The mean Dice index was 0.748 ± 0.190, which was extremely close to the threshold level of 0.75 for good overlap between the predicted and ground truth segregations. The Jaccard index was 0.630 ± 0.213, which exceeded the threshold value of 0.5 for a good overlap. CONCLUSION: The CNN performed well at segregating the brachial plexus at the interscalene level. Further development could allow the CNN to be used to facilitate real-time identification of the brachial plexus during interscalene block administration. CLINICAL TRIAL REGISTRATION: The trial was registered prior to patient enrollment at the Chinese Clinical Trial Registry (ChiCTR2200055591), the site url is https://www.chictr.org.cn/ . The date of trial registration and patient enrollment is 14/01/2022.


Asunto(s)
Anestesia de Conducción , Bloqueo del Plexo Braquial , Plexo Braquial , Masculino , Humanos , Adulto , Persona de Mediana Edad , Estudios Prospectivos , Redes Neurales de la Computación , Plexo Braquial/diagnóstico por imagen
20.
Int J Radiat Biol ; 100(2): 248-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37747796

RESUMEN

BACKGROUND: The relationship among body mass index (BMI), setup error and radiation pneumonitis is not clearly illustrated. OBJECTIVE: The present study aimed to investigate the role of BMI in non-small cell lung cancer (NSCLC) patients' radiation treatment, focusing on its relationship with setup error of patient positioning, the dosimetric parameters of intensity-modulated radiation therapy (IMRT) and the incidence of radiation pneumonitis. METHODS: This prospective observational study included 523 cases of NSCLC patients during 2020-2022. Patients were divided into different groups by different BMI. The setup error was obtained by cone beam CT (CBCT) at three positions, lateral (LAT), longitudinal (LNG) and vertical (VRT). IMRT dosimetric parameters of V5, V20, and mean dose were collected. RESULTS: Patients with BMI ≥28 kg/m2 showed significantly higher absolute values of LAT, LNG and VRT, higher V5, V20, mean dose, as well as higher total incidence of radiation pneumonitis and grade III radiation pneumonitis compared with patients with BMI <24 kg/m2 or 24-28 kg/m2. Spearman's analysis demonstrated that the absolute values of LAT, LNG and VRT were positively correlated with BMI, and positive correlation existed among BMI, dosimetric parameters and setup errors. ROC curves showed that LAT in setup errors and V5 in dosimetric parameters had the best diagnostic value for prediction of radiation pneumonitis. Only BMI, LAT, V5 and V20 were the independent risk factors for radiation pneumonitis. CONCLUSIONS: Setup error caused by higher BMI might be associated with the dosimetric parameters, as well as the incidence of radiation pneumonitis in NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neumonitis por Radiación , Radioterapia de Intensidad Modulada , Humanos , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neumonitis por Radiación/epidemiología , Neumonitis por Radiación/etiología , Radioterapia de Intensidad Modulada/efectos adversos , Índice de Masa Corporal , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/radioterapia , Incidencia , Dosificación Radioterapéutica , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...